Deep learning attempts to mimic the human brain—albeit far from matching its ability—enabling systems to cluster data and make predictions with incredible accuracy.
What is Neural Network?
Neural networks, also known as artificial neural networks (ANNs) or simulated neural networks (SNNs), are a subset of machine learning and are at the heart of deep learning algorithms. Their name and structure are inspired by the human brain, mimicking the way that biological neurons signal to one another.
Artificial neural networks (ANNs) are comprised of a node layers, containing an input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to another and has an associated weight and threshold. If the output of any individual node is above the specified threshold value, that node is activated, sending data to the next layer of the network. Otherwise, no data is passed along to the next layer of the network.
What is Deep Learning?
Deep learning is a subset of machine learning, which is essentially a neural network with three or more layers. These neural networks attempt to simulate the behavior of the human brain—albeit far from matching its ability—allowing it to “learn” from large amounts of data. While a neural network with a single layer can still make approximate predictions, additional hidden layers can help to optimize and refine for accuracy.
Deep learning drives many artificial intelligence (AI) applications and services that improve automation, performing analytical and physical tasks without human intervention. Deep learning technology lies behind everyday products and services (such as digital assistants, voice-enabled TV remotes, and credit card fraud detection) as well as emerging technologies (such as self-driving cars).
Neural Networks vs. Deep Learning
Deep Learning and neural networks tend to be used interchangeably in conversation, which can be confusing. As a result, it’s worth noting that the “deep” in deep learning is just referring to the depth of layers in a neural network. A neural network that consists of more than three layers—which would be inclusive of the inputs and the output—can be considered a deep learning algorithm. A neural network that only has two or three layers is just a basic neural network.
Deep learning vs. Machine learning
If deep learning is a subset of machine learning, how do they differ? Deep learning distinguishes itself from classical machine learning by the type of data that it works with and the methods in which it learns.
Machine learning algorithms leverage structured, labeled data to make predictions—meaning that specific features are defined from the input data for the model and organized into tables. This doesn’t necessarily mean that it doesn’t use unstructured data; it just means that if it does, it generally goes through some pre-processing to organize it into a structured format.
Deep learning eliminates some of data pre-processing that is typically involved with machine learning. These algorithms can ingest and process unstructured data, like text and images, and it automates feature extraction, removing some of the dependency on human experts. For example, let’s say that we had a set of photos of different pets, and we wanted to categorize by “cat”, “dog”, “hamster”, et cetera. Deep learning algorithms can determine which features (e.g. ears) are most important to distinguish each animal from another. In machine learning, this hierarchy of features is established manually by a human expert.
Then, through the processes of gradient descent and backpropagation, the deep learning algorithm adjusts and fits itself for accuracy, allowing it to make predictions about a new photo of an animal with increased precision.
Machine learning and deep learning models are capable of different types of learning as well, which are usually categorized as supervised learning, unsupervised learning, and reinforcement learning. Supervised learning utilizes labeled datasets to categorize or make predictions; this requires some kind of human intervention to label input data correctly. In contrast, unsupervised learning doesn’t require labeled datasets, and instead, it detects patterns in the data, clustering them by any distinguishing characteristics. Reinforcement learning is a process in which a model learns to become more accurate for performing an action in an environment based on feedback in order to maximize the reward.